

Leveraging State Space Models for Long Range Genomics

LMRL ICLR 2025

Anirudha Ramesh*, Matvei Popov*, Aymen Kallala*, Rick Gentry, Shivesh Khaitan, Narimane Hennouni, Alain-Sam Cohen

© 2025 InstaDeep Ltd. All Rights Reserved

Problem & Motivation: The Long Range Genomics Challenge

Processing genomes requires **LONG** contexts while maintaining **single-nucleotide** resolution,

- → Genomic input is massive Human Genome is ~3Gbp long!
- → Q Key signals rely on single-base precision across long distances.

Existing SoTA are,

2

- → Transformer based, Nucleotide Transformer: quadratic attention limitation (12kbp) & rely on explicit positional encodings.
- → And often sacrifice on single nucleotide resolution, **DNABert**: k-mer tokenization

Ji et. all, 2020, Effective gene expression prediction from sequence by integrating long-range interactions Dalla-Tore et. all, 2024, Nucleotide Transformer: building and evaluating robust foundation models for human genomics

SSMs: A Scalable Alternative To Transformers?

SSMs,

- → Scale linearly with sequence length
- → No rigid explicit position encodings

Could it be?

Source: ChatGPT

Objective: Answer 3 Key Questions

Can SSMs,

- → Match transformers across genomics tasks?
- → Zero-shot extrapolate well beyond training sequence lengths?
- → Enable democratic access to ultra-long inference?

Experimental Setup

- 🧬 Datasets & Setup
 - 📚 Pre-training

50M parameter NTv2 (Transformer), Caduceus & Hawk (SSMs) on InstaDeep's Multi-Species Dataset (MSD)

Fine-Tuning & Evaluation On Genomics Long-Range Benchmark (GLRB)

Zero-Shot Extrapolation

Tested directly on longer sequences from GLRB

Dalla-Tore et. all, 2024, Nucleotide Transformer: building and evaluating robust foundation models for human genomics Schiff et. all, 2024, Caduceus: Bi-Directional Equivariant Long-Range DNA Sequence Modeling De et. all, 2024, Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient Language Models Trop et. all, 2024, The Genomics Long-Range Benchmark: Advancing DNA Language Models

© 2025 InstaDeep Ltd. All Rights Reserved. Confidential and Proprietary.

Results: SSMs Can Perform Comparably Across Multiple Tasks!

Task	NTv2	Caduceus
Bulk RNA (R ²)	0.52	0.53
VEP eQTL (AUROC)	0.72	0.68
VEP ClinVar (AUROC)	0.75	0.75
Histone Marks (AUPRC)	0.34	0.52
Promoters (AUPRC)	0.75	0.77
Enhancers (AUROC)	0.78	0.75

Caduceus can match or outperform NTv2 on GLRB

i>InstaDeep™

Results: SSMs Show Remarkable Zero-Shot Extrapolation Across Tasks!

From 12Kbp to 120Kbp Without Retraining SSMs generalize, Transformers collapse

7

Enables scaling beyond training during inference!

© 2025 InstaDeep Ltd. All Rights Reserved. Confidential and Proprietary.

Results: SSMs Enable Efficient 1 Million Base-Pair Inference!

Single-GPU, Ultra-Long Sequence Inference

Chunk-wise hidden state transfer + parallel scan within chunks

- \rightarrow Enables linear-time inference w reduced constant v/s full linear scan
- \rightarrow Scales efficiently to 1Mbp+ on a single A100 GPU (40GB)

Efficient, scalable, and democratized — long-range genomics without quadratic cost!

Conclusions, and Looking Ahead

SSMs: A New Frontier for Genomics Modeling.

Effective, scalable, democratic and ready for whole-genome applications!

Next Steps

→ Better utilize longer contexts available during inference, to actively improve in tasks which could benefit from it.

|>InstaDeep™